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Section I: Problem Statement and Objectives 

Problem Statement: 

 Our mass transport project studies the tarnishing of metal surfaces through oxidation 
mechanisms. Our project focuses on studying the effects of oxidation within cylindrical pipes, 
and the theoretical applications for momentum and heat transfer, as well as real-world 
applications. Our studies are based on this problem in the Transport Phenomena textbook: 

 
Objectives: 

• Prove that Equation 18B.13-1 is true for simple Cartesian and Cylindrical systems, by 
representing diffusion in the z direction (Cartesian) and the r direction (Cylindrical). 

• Create basic models for mass transport using Equation 18B.13-1. 
• Compare two common metals to visualize the difference between them under the same 

conditions. 
• Create basic models for flow rate reduction based on film buildup. 
• Create basic models for heat flux reduction based on film buildup. 
• Create basic models for temperature reduction based on film buildup. 
• Connect the problems to real-world applications. 
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Section II: BSL 18B.13 Solution 

Assumptions: 

• Steady State 
• No Convection 
• Diffusion obeys Fick’s Law 
• One-dimensional diffusion as a function of z/r 
• Constant Molar Film Density 
• Constant diffusivity 
• Oxygen concentration is zero at oxide/metal interface 
• Oxidation reaction is heterogeneous, that is, not in the bulk 

Boundary Conditions: 

• B.C. 1: At z/r = 0, or the oxide/gas interface, concentration = 𝑐𝑐0 
• B.C. 2: At z/r = zf/rf, or the oxide/metal interface, concentration = 0. 

Combined Flux (Equation 18.0-1) 

*Note: Fick’s law for z/r is equivalent, so for the rest of the solution, z will be used 

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = −𝑐𝑐𝔇𝔇𝑂𝑂2−𝑀𝑀𝑂𝑂𝑥𝑥
𝜕𝜕𝑥𝑥𝑂𝑂2
𝜕𝜕𝑧𝑧

+ 𝑥𝑥𝑂𝑂2(𝑁𝑁𝑂𝑂2,𝑧𝑧 + 𝑁𝑁𝑀𝑀𝑂𝑂𝑥𝑥,𝑧𝑧) 

Assuming no convection and short handing mass diffusivity constant gives: 

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = −𝔇𝔇𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝑧𝑧

         

There are three ways to obtain the concentration gradient. One is by use of shell balances, 
another is to use the equation of change, the final is a ‘shortcut’ using our boundary conditions. 
The shortcut method is shown in the slides to save both time and slides. However, in this report, 
the shell balance solution and equation of change is shown here: 

Shell Balance/Equation of Change Solution 

It is redundant to list the first steps of the shell balance, and it is intuitive based on the simplicity 
of the problem statement to recognize that the shell balance equation will reduce to: 

• 𝑑𝑑𝑁𝑁𝑂𝑂2,𝑧𝑧

𝑑𝑑𝑧𝑧
= 0 

Using the equation of change will give us the exact same result, as we assume diffusion only as a 
function of z, steady state, no convection, and heterogeneous reaction.  
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Integrating both sides is a familiar process to arrive at: 

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = 𝐶𝐶1 

We can substitute the combined flux term for the simplified expression we found from Equation 
18.0-1 to arrive at: 

• −𝔇𝔇𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝑧𝑧

= 𝐶𝐶1     

• 𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝑧𝑧

= 𝐶𝐶1
−𝔇𝔇

    (Rearranging) 

Integrating again gives us an expression for the concentration profile: 

• 𝑐𝑐𝑂𝑂2 = −𝐶𝐶1
𝔇𝔇
𝑧𝑧 + 𝐶𝐶2 

Applying Boundary Condition 1 results in: 

• 𝑐𝑐0 = 𝐶𝐶2 

Applying Boundary Condition 2 results in: 

• 𝐶𝐶1 = 𝔇𝔇𝑐𝑐0
𝑧𝑧𝑓𝑓

 

The overall concentration profile then becomes: 

• 𝑐𝑐𝑂𝑂2 = − 𝑐𝑐0
𝑧𝑧𝑓𝑓
𝑧𝑧 + 𝑐𝑐0 

Taking the derivative yields our desired term: 

• 𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝑧𝑧

= − 𝑐𝑐0
𝑧𝑧𝑓𝑓

 

Solution using Boundary Condition Shortcuts 

If we recognize that we already have the boundaries of the system solved, we can arrive at the 
desired term much quicker. This is the solution shown in the slides. 

• 𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝑧𝑧

= 0−𝑐𝑐0
𝑧𝑧𝑓𝑓−0

= − 𝑐𝑐0
𝑧𝑧𝑓𝑓

 

So, our total flux becomes: 

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = 𝔇𝔇 𝑐𝑐0
𝑧𝑧𝑓𝑓
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Relating the Combined Flux to Diffusion 

The logical ‘leap of faith’ to solve this problem lies within the reaction stoichiometry. Remember 
from the problem statement that the oxidation reaction is: 

• 1
2
𝑥𝑥𝑂𝑂2 + 𝑀𝑀 → 𝑀𝑀𝑂𝑂𝑥𝑥 

Our combined molar flux solved for oxygen diffusion, but we can use this reaction stoichiometry 
to relate to our oxide molar formation, which we can then relate to our film thickness. 

We can see that the oxide is related to the oxygen by 2
𝑥𝑥
. Applying this to our total flux: 

• 𝑀𝑀𝑂𝑂𝑥𝑥 ∝
2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑧𝑧𝑓𝑓

 

To further continue, we must have a way to relate our film thickness to molar flux. That 
relationship is found using molar density. Letting 𝑐𝑐𝑓𝑓 be our molar density, we can divide both 
sides of the equation to get: 

• 𝑀𝑀𝑂𝑂𝑥𝑥
𝑐𝑐𝑓𝑓

= 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑧𝑧𝑓𝑓𝑐𝑐𝑓𝑓

 

Intuitively it can be seen that our left-hand side term is dimensionally equivalent to our film 
thickness per time. Converting into differential form gives us: 

• 𝑑𝑑 𝑀𝑀𝑂𝑂𝑥𝑥
𝑐𝑐𝑓𝑓

= 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑧𝑧𝑐𝑐𝑓𝑓

 

Separating like terms and integrating will yield an expression for film thickness. Observe that 
our coordinate system is defined from 0 to some arbitrary thickness 𝑧𝑧𝑓𝑓, and our system must 
range in time from the start 0 to some arbitrary time 𝑡𝑡. 

• ∫ 𝑧𝑧𝑑𝑑𝑧𝑧𝑧𝑧𝑓𝑓
0 = ∫ 2𝔇𝔇𝑐𝑐0

𝑥𝑥𝑐𝑐𝑓𝑓
𝑑𝑑𝑡𝑡 𝑑𝑑

0  

• 1
2
𝑧𝑧𝑓𝑓2 = 2𝔇𝔇𝑐𝑐0𝑑𝑑

𝑥𝑥𝑐𝑐𝑓𝑓
 

Solving for 𝑧𝑧𝑓𝑓gives: 

• 𝑧𝑧𝑓𝑓 = �
4𝔇𝔇𝑂𝑂2−𝑀𝑀𝑂𝑂𝑥𝑥𝑑𝑑

𝑥𝑥
𝑐𝑐0
𝑐𝑐𝑓𝑓

 

The ± is omitted because it is not reasonable to have a negative film thickness within the context 
of this problem. 
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Section III: Studies of Two Different Metals: Film Thickness, Mass 
Flow Rate, Heat Flux, and Temperature Effects 
A publication from 1999 has diffusivity estimates for Aluminum Oxide (alumina) and 
Magnesium Oxide. These diffusivities were measured at 1325 K, which should be considered 
when analyzing the results of this section, as well as the other transport measurements. In 
addition, the purpose of comparing these two metals is to show how diffusivity affects the 
differences in measured variables, not necessarily to show precise data measurements. 

All values used for these calculations can be found in Appendix: Supporting Calculations, 
Constants, and Dimensional Analysis.  

 

Film Thickness Graphs 

 
Figure 1: Film Thickness of Al₂O₃ and MgO over time 

Substituting in mass diffusivities from the Journal of Applied Physics for alumina and 
magnesium oxide, we can graph film thickness as a function of time. 

Alumina is shown in red while magnesium oxide is shown in blue in Figure 1. 

Film thickness grows much quicker with alumina than with magnesium oxide. Other metals, 
such as titanium, have even lower diffusivities.  



8 
 

Flow Rate Loss Graphs 

 
Figure 2: Flow Rates of Al₂O₃ and MgO over time 

Choosing a cylindrical coordinate system and using the Hagen–Poiseuille equation yields the 
following surprising result for flow rate reduction. 

Aluminum Oxide forms a film so quickly that the flow rate is virtually nothing after only a 
second. Magnesium oxide retains around ~60% of its initial flow rate after five seconds and 
tapers off to zero around five minutes.  

This has interesting implications for corrosion engineering: Your selected metal or alloy could 
have massive implications for flow assurance. A seemingly small difference in diffusivities can 
quickly get out of hand, considering flow rate in a pipe depends on radius raised to the fourth 
power. That loss will propagate extremely fast, as visually demonstrated in Figure 2. 

 

 

 

 

 

 



9 
 

Heat Flux Loss Graphs 

 
Figure 3: Heat Flux of Al₂O₃ and MgO over time 

The same pattern continues when examining heat flux. Using the heat transfer example of a 
steam pipe provided in CME 324 notes, we obtain the following curves in Figure 3. 

These graphs provide an excellent model to understand how the oxide film affects the heat flux 
loss, but they are nowhere near reality. 

Fourier’s Law of Thermal Conductivity tells us that temperature drop is related to heat flux, so 
the temperature distribution would change as time goes on. Thermal conductivity is also a strong 
function of temperature as you approach absolute zero, so this analysis has reasonable limits. 

However, no industry can operate steam at temperatures near absolute zero without 
unrealistically high pressures, so it is safe to assume that this model paints a semi-complete 
picture of the energy transport model. 

Aluminum loses over 50% of the initial heat flux within five seconds under these conditions. 

Magnesium oxide strongly retains the initial heat flux for over five minutes. Magnesium Oxide 
also takes almost eight hours to reach ~10% of the initial heat flux due to the natural logarithmic 
nature of this scenario. 
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Temperature Gradient Loss Graphs 

 
Figure 4: Temperature of inside surface of Al₂O₃ and MgO over time 

Using the same system as the previous system, Figure 4 displays the temperature on the 
boundary of the pipe, assuming that the ambient temperature is 298.15 K. 

Yet again, the limits of these models are quickly realized. Thermal conductivity becomes a strong 
function of temperature approaching absolute zero, and the limits of this analysis are shown.  

This model, assuming constant thermal conductivity, gives the absurd result that the aluminum 
pipe surface hits absolute zero in under a second. 

More realistically, thermal conductivity would increase massively, and the curve would deviate 
from absolute zero. 

The model still shows the drastic difference between the two oxides however, with magnesium 
oxide taking yet again over five minutes to display the same absolute zero drop off behavior. 
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Appendix: Supporting Calculations, Constants, and Dimensional 
Analysis 

 

Molar Density of Aluminum (III) Oxide: 3.987 𝑔𝑔
𝑐𝑐𝑚𝑚3 =

3,987𝑘𝑘𝑘𝑘
𝑚𝑚3

0.10196 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

= 39,103.57 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3  

Molar Density of Magnesium (I) Oxide: 3.600 𝑔𝑔
𝑐𝑐𝑚𝑚3 =

3,600𝑘𝑘𝑘𝑘
𝑚𝑚3

0.040304 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

= 89,321.16 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3  

Diffusivity of Aluminum (III) Oxide: 5.62 ∗ 10−2 𝑚𝑚
2

𝑠𝑠
  

Diffusivity of Magnesium (I) Oxide:  6.76 ∗ 10−4 𝑚𝑚
2

𝑠𝑠
 

Diffusivity data: https://physics.uwo.ca/~lgonchar/courses/p9826/Lecture12_oxidation.pdf  

Film Thickness Coefficient Aluminum (III) Oxide: �4∗5.62∗10−2

1.5
∗ 9.4
39103.57

= 6.002 ∗ 10−3 

Film Thickness Coefficient Magnesium (I) Oxide: �4∗6.76∗10−4

1
∗ 9.4
89321.16

= 5.334 ∗ 10−3 

Thermal Conductivity of Aluminum (III) Oxide at 500K: 20 𝑊𝑊
𝑚𝑚2∗𝐾𝐾

 (Perry’s Handbook) 

Thermal Conductivity of Magnesium (I) Oxide at 500K: 27 𝑊𝑊
𝑚𝑚2∗𝐾𝐾

 (Perry’s Handbook) 

 

Film Thickness Graph: https://www.desmos.com/calculator/dmvjcdl3pe 

Flow Rate Graph: https://www.desmos.com/calculator/79fqdmm8cl 

Heat/Temperature Graph: https://www.desmos.com/calculator/6oytiv7mft 

 

 

 

 

https://physics.uwo.ca/%7Elgonchar/courses/p9826/Lecture12_oxidation.pdf
https://www.desmos.com/calculator/dmvjcdl3pe
https://www.desmos.com/calculator/79fqdmm8cl
https://www.desmos.com/calculator/6oytiv7mft

